Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
dynasys:bevoelkerungsmodelle [06.02.2018 13:25]
whupfeld [Aufgabe]
dynasys:bevoelkerungsmodelle [07.02.2018 13:43] (aktuell)
whupfeld
Zeile 1: Zeile 1:
 +<​html><​div style="​background-color:#​eee;​padding:​3px;​text-align:​center;"></​html>​
 +[ [[Einführung]] ] - [ [[Einleitung]] ] - [ [[dynamischesysteme|Dynamische Systeme]] ] - [ [[Wachstumsfunktionen]] ] - [ [[raeuber-beute-modell|Räuber-Beute-Modell]] ] - [ **[[Bevoelkerungsmodelle|Bevölkerungsmodelle]]** ] - [ [[physikmodelle|Modelle in der Physik]] ] - [ [[Literaturverzeichnis]] ]
 +<​html></​div></​html>​
 ====== 5. Bevölkerungsmodell mit drei Altersklassen ====== ====== 5. Bevölkerungsmodell mit drei Altersklassen ======
- 
  
 Die im letzten Kapitel betrachteten Wachstumsfunktionen beschreiben die Bevölkerungsentwicklung oft nur unzureichend. Sie sind höchstens für die Simulation des Wachstums von Bakterienkulturen geeignet. Fehler entstehen vor allem dadurch, daß man von einer homogenen Bevölkerung ausgeht, deren Altersstruktur völlig unberücksichtigt bleibt. Es macht offensichtlich einen Unterschied,​ ob eine Bevölkerung vorwiegend aus Kindern und Erwachsenen im reproduktionsfähigen Alter oder aus Alten besteht. Alte tragen zur Reproduktion nicht bei, Kinder noch nicht. Zur Berechnung der Geburtenzahlen muß daher die Zahl der gebährfähigen Mütter und deren Fertilität (Fruchtbarkeit) bekannt sein. Erst in einem Modell, das die wichtigsten Altersgruppen enthält, können zuverlässige Angaben über den Bedarf an infrastrukturellen Maßnahmen (Bau von Kindergärten,​ Schulen etc.) bzw. über Staatsausgaben und wirtschaftliche Entwicklung gemacht werden. Die im letzten Kapitel betrachteten Wachstumsfunktionen beschreiben die Bevölkerungsentwicklung oft nur unzureichend. Sie sind höchstens für die Simulation des Wachstums von Bakterienkulturen geeignet. Fehler entstehen vor allem dadurch, daß man von einer homogenen Bevölkerung ausgeht, deren Altersstruktur völlig unberücksichtigt bleibt. Es macht offensichtlich einen Unterschied,​ ob eine Bevölkerung vorwiegend aus Kindern und Erwachsenen im reproduktionsfähigen Alter oder aus Alten besteht. Alte tragen zur Reproduktion nicht bei, Kinder noch nicht. Zur Berechnung der Geburtenzahlen muß daher die Zahl der gebährfähigen Mütter und deren Fertilität (Fruchtbarkeit) bekannt sein. Erst in einem Modell, das die wichtigsten Altersgruppen enthält, können zuverlässige Angaben über den Bedarf an infrastrukturellen Maßnahmen (Bau von Kindergärten,​ Schulen etc.) bzw. über Staatsausgaben und wirtschaftliche Entwicklung gemacht werden.
  
 Wir benutzen hier ein Modell mit nur drei Altersklassen,​ das aber schon erstaunlich gute Vorhersagen zulässt: Wir benutzen hier ein Modell mit nur drei Altersklassen,​ das aber schon erstaunlich gute Vorhersagen zulässt:
-*Kinder im Alter von 0 bis 16 Jahren. +  ​* Kinder im Alter von 0 bis 16 Jahren. 
-*Eltern im Alter von 17 - 45 Jahren, wobei es genauso viele Frauen wie Männer gibt. +  * Eltern im Alter von 17 - 45 Jahren, wobei es genauso viele Frauen wie Männer gibt. 
-*Alte älter als 45 Jahre.+  * Alte älter als 45 Jahre.
  
 Die Gesamtbevölkerung ergibt sich aus der Summe der drei Bevölkerungsgruppen. Jede Bevölkerungsgruppe hat eine altersspezifische Sterberate, die bei der Gruppe der Alten am höchsten ist. Die Gruppe der Kinder hat Zuwachs durch die Neugeborenen,​ jeweils 1/16 der Gruppe der Kinder geht pro Jahr über in die Gruppe der Erwachsenen. Ein ähnlicher Übergang findet zwischen der Gruppe der Eltern und der Alten statt. Die Gesamtbevölkerung ergibt sich aus der Summe der drei Bevölkerungsgruppen. Jede Bevölkerungsgruppe hat eine altersspezifische Sterberate, die bei der Gruppe der Alten am höchsten ist. Die Gruppe der Kinder hat Zuwachs durch die Neugeborenen,​ jeweils 1/16 der Gruppe der Kinder geht pro Jahr über in die Gruppe der Erwachsenen. Ein ähnlicher Übergang findet zwischen der Gruppe der Eltern und der Alten statt.
Zeile 14: Zeile 16:
  
 {{ dynasys:​abb_3_16.gif }} {{ dynasys:​abb_3_16.gif }}
-%centerSimulationsdiagramm für das Wachstumsmodell+<​html><​div style="​text-align:​center; font-style:​italic;">​Simulationsdiagramm für das Wachstumsmodell</​div></​html>​
  
    
Zeile 51: Zeile 53:
  
 {{ dynasys:​abb_3_17.gif }} {{ dynasys:​abb_3_17.gif }}
-%centerBevölkerungsentwicklung bei einer konstanten Fertlität von 1,2+<​html><​div style="​text-align:​center; font-style:​italic;">​Bevölkerungsentwicklung bei einer konstanten Fertlität von 1,2</​div></​html>​
  
 Entwicklungsländer haben eine völlig andere Altersstruktur als entwickelte Länder. Die Angaben in der Tabelle für das Land Kenia entstammen wie alle anderen Daten zum Modell der Bevölkerung mit drei Klassen BOS85. In Global 2000 GLO80 ist ein Kapitel der Bevölkerungsprognostik gewidmet. Dort wird ausführlich das Kohortenmodell besprochen, das aus jedem Jahrgang eine Altersgruppe bildet und somit ein genaueres Modell darstellt. Gleichzeitig wird aber auch auf die Schwierigkeiten bei der Prognose der Bevölkerungsentwicklung hingewiesen,​ die vor allem im Bereich der Datenerhebung liegen. Vor allen bei Ländern der dritten Welt kann oft nur mit Annahmen und Schätzungen gearbeitet werden. Entwicklungsländer haben eine völlig andere Altersstruktur als entwickelte Länder. Die Angaben in der Tabelle für das Land Kenia entstammen wie alle anderen Daten zum Modell der Bevölkerung mit drei Klassen BOS85. In Global 2000 GLO80 ist ein Kapitel der Bevölkerungsprognostik gewidmet. Dort wird ausführlich das Kohortenmodell besprochen, das aus jedem Jahrgang eine Altersgruppe bildet und somit ein genaueres Modell darstellt. Gleichzeitig wird aber auch auf die Schwierigkeiten bei der Prognose der Bevölkerungsentwicklung hingewiesen,​ die vor allem im Bereich der Datenerhebung liegen. Vor allen bei Ländern der dritten Welt kann oft nur mit Annahmen und Schätzungen gearbeitet werden.
  
 +**Altersverteilung und Sterblichkeit in Kenia:** 
 +<​html><​div style="​width:​350px"></​html>​
 ^ Altersgruppe ^ Bevölkerung in Mio. ^ Sterblichkeit ^ ^ Altersgruppe ^ Bevölkerung in Mio. ^ Sterblichkeit ^
-| Kinder | 7,5 || 0,004 | +|Kinder | 7,5 | 0,004 | 
-| Eltern | 6,0 || 0,005 | +|Eltern | 6,0 | 0,005 | 
-| Alte    | 1,5 || 0,05 | +|Alte    | 1,5 | 0,05 | 
-%center% Altersverteilung und Sterblichkeit in Kenia+<​html></​div></​html>​ 
 + 
  
 ===== Aufgabe ===== ===== Aufgabe =====